OwasR

PLC Programming Guidelines

Dan Kandray
January 30, 2020

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

PLC Programming Guidelines Suaedde

I. Develop and Document the Project Plan
Il. Create a State Logic Diagram

I1l. Organize Project Structure (Code) into Tasks,
Programs and Routines

V. Develop Code for Reuse
V. Standardize Naming Conventions

V1. Develop Routine Logic Using State Logic
Programming Methods

VIl. Simulate the ladder logic program of instructions to
verify logic continuity

Vlill.Download and verify the program on the actual
machine, workstation, or system being controlled.

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

Develop and Document the Project Plan
SwosRok

From project narrative,
create a clear flowchart
that details machine
functions.

Develop a firm
understanding of the
process

Simplify the process as
much as possible

oo v v

ated and
anicipal F — = Fill water tank
T -\upplyl

Fill diesel tank

y

s N AN
/,/ Is water~_ N //lr; diese\l‘\\ No
7 othe ™ & to the ~
. required ~_ required 7
. level?~ ~evel?
\\ Fdl - \‘\\ o
Yes $ Yes ;
Open CV 2 10 Open CV 110
allow flow of pump diesel to
water (o the boiler the fuel chamber
Start
boiler
No Continue
boiling
Yes

Open MV l1for
steam flow to the
steam distributor

Is the steam
distributor to
the level

required ?

Open MV 2 for
steam distribution
to the steam
consumers

¥
Q

Stores and |

distributes |—
steam

—

distributor to

Continue
storing
steam

Is the
sleam

the level
required ?

@
v

Check for
condensate
water in the steam
consumers

Is there
condensate water
in the steam

consumers?

Store condensate
water in the
condensate tank

Pump condensate

water to the water

treatment plant by
PM 3

Pump treated

water Lo waler

tank by PM4 1o
continue the cycle

Develop and Document the Project Plan
OwasR

List all anticipated physical inputs, outputs,
parameters and alarms

Agitator
Inlet valve 1 Motor Inlet valve 2

Material B

START STOP

Cycle ON Buzzer

InstrumentationTools.com

Outlet valve

Mixed products

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

Il. Create a State Logic Diagram Suaedov

1. Identify the machine states and document the
transitions (state selectors) on a State Logic Diagram

a) Each state is identifiable by the unique condition of the outputs

(Start Hold oy
ide Runng ——>» Hddng —>» Hed
T Hold
Restart
Reseting Restaring <
X, y,
l:pr Abort
Reset Abort A 4
Compkete Stoppng ——>» Aboring

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

lll. Organize Project Structure (Code)

into Tasks, Programs and Routines Swaeddv

1.

Tasks

a) Most code should reside in a continuous task

b) Use periodic tasks for slower processes or when time based
operations is critical

c) Use event tasks for operations that require synchronization to a
specific event

Programs
a) Separate distinguishable equipment or equipment functions into
isolated programs

b) Control the execution order of the programs from Task (properties)
Program Scheduler

c) Centralize Outputs into one program

d) Isolate reusable code and/or different programmers

Routines

a) Use ladder logic language in the routine and modularize code into
subroutines.

b) Always place reset conditions in a branch preceding the set condition

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

lll. Organize Project Structure (Code)
into Tasks, Programs and Routines Swasde

[t garine <

=55 Controller MultiValve_S5t8_Seat_Tester
- Controller Tags

-7 Cantroller Fault Handler

27 Power-Up Handler

=45 Tasks

[—}'@ MainTask

r-_,‘uﬂ MainProgram

¥ Parameters and Local Tags
..... En A _CALLER

..... Bl B_CAMERA

..... B_MAIN

..... Bl C00_START

..... Bl Co1_RULES

..... Bl C02_SERVO_LOAD

..... CO3_PRESSURE_CTRL

..... [E| D_FKE_X_PATTERM

d i [Ejl D_RX_PATTERN

..... [l D_X_PATTERN

..... E_STRAIGHT

..... B Fcaue

..... [l K END_OF_CYCLE

..... L_CALIBRATION

..... B M00_MODBUS_GLOBAL
..... Bl M01_MODBUS_SERVICE
..... Bl M03_MODBUS_CMD

..... QUICK_EDIT

..... [Bi 500_SCREEN

..... B so1_EeDiT

..... S02_SCREEN_TEXT
..... Bl T_SERVO

_____ Bl W_PLC_STATION_1

_____ Z01_ANALOG
..... B 702_CAMERA
-8 Modbus

@E& Modbus_Master
(271 Unscheduled

VS

Controller Organizer « 0 X

¥ Controller Tags

----- (I3 Controller Fault Handler

----- (3 Power-Up Handler

=& Tasks

EI% HLT_Communications

-8 HLT_Comm_Main

w8 RTA_COM

=58 MainTask

l:ﬁ; MainProgram

l:ﬂ; Password

l:ﬁ; Recipe Entry

l:ﬂ; Recipe_Load

l:ﬁ; Watchdeog_Calibration

l:ﬂ; Manual_HLT_cal_scrn

l:ﬂ; Air_Reg_Calibraticn

l:ﬁ; Screen_Monitoring

l:ﬂ; Analog_In_Cut

l:ﬂ; Inputs

l:ﬂ; Start_Conditions

l:ﬁ; Systern_Start_Logic

l:ﬂ; Test_Cycle_Time

l:ﬂ; Jar_and_Clamping

l:ﬂ; Air_Actuated Valves

l:ﬁ; Jar_Pumpdown

-3 Shell_Test

-2 SHUTOFF_Test

w28 End_of _Test
l:ﬁ; lar_Release
l:ﬂ; Stop_Test
l:ﬂ; Outputs

----- 23 Unscheduled

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

IV. Develop Code for Reuse Suaede

1. Use user-defined data types (UDTs) to group data

a) A UDT lets you organize or group data logically, so that all of
the data associated with a device (such as a pressure
transmitter or variable-frequency drive) can be grouped.

b) The tag names that you assign self-document the structure
Programs

2. Use Add-On Instructions to create standardized
modules of code for reuse across a project.
a) Used to encapsulate a specific or focused operation or function
3. Use subroutines to reuse code within a program
1. Can pass UDTs
2. Can only be called from with the program they reside

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

2] Data Type: MODBUS READ
MName: MODEUS_READ I Data Type Size: 36 bytes
UDT Example
Members:
MName Data Type Description —
. TRIO_ACK INT
(=451 Data Types STEP INT
El'ﬁ User-Defined STATUS INT
ERROR INT
CMD_ACK INT
X_LEFT_POS INT
¥_RIGHT POS INT
Z_Pos INT
X_LEFT_ENC_POS INT
X_RIGHT_ENC_POS INT
Z_ENC_PDS INT
= LEFT_DRIVE INT
----- [v!oc!_folmmand_ﬂtructure S ik
Z_DRIVE INT
TRIO_ERR_LINE INT
TRIO_ERR_NO INT
P ABORT INT
|4 Controller Tags - MultiValve_St8_Seat_Tester(controller) ey
Scope: | PMutivalve_sta_! v| Show: |N| Taags "’| -
Name Alias For Base Tag Data Type =3|n Desﬁpti
[+-Mod_Commands Mod_Command_S... k
[FHREAD_TRIO_DATA MODBUS_READ i .
FH-VERIFY_TRIO_DATA MODBUS_WRITE Lok] [Cancel | ==
H-WRITE_TRIO_DATA MODBUS_WRITE Read/Write
[FH-A01_CHK_OK OK_TO_RUN Read/\Write
[+-aoi_op_name OP_MAME Read Write
H-COMMS FLC_COMMS Read/Write
[+-SEND_DATA PLC_FROM_SLA . Read/Write
[H-RCW_DATA PLC_TO_SLAVE Read/\Write
CALIB_FAIL_VAL |REAL Read/\Write
[+H-CALIBRATION REAL[5] Read/Write
CALIBRATION_BACKUP REAL Read/Write
|| CZSTACK REAL Read/Write
4 b Y Monitor Tags Edit Tags / | < >

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

Add-On Instruction Example Swaeddw

EIE Add-0n Instructions
- Lzt CAMERA_SMART
-5} FLOW_FAST_PASS

-5 OK_TO_RUN
-5 OP_NAME
-5 SCP

w3 TEST_PS|_CTRL
&[5 VERIFICATION

Bl LINE_SLOPE_CALC - Logic =N ==
I E’-:t.ij rry i.-{.':sz ES [labed 2 g ow b | ‘ i Data Cortest: | {=} LINE SLOPE_CALC =definttion= o _;‘fl __iﬁ
SUE SUB D -
Subtract Subtract Divide
Source A END: Y Source A END X Source A RISE
2.0 3.0 0.0
Source B STARTY Source B START_X Source B RUN
2.0 & 1.0 2.0 #
Dest RISE Dest RUN Drest OuTPUT
0.0 2.0 % 1.5

(End)

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions Suede

1. Controller
- Area/Unit +Type (Abreviation)

- Example: Mixing_ CPX
Note abbreviation is for CompactLogix PLC
2. Controller Project

- Controller name, the letter C, 1-digit major revision number,
underscore, 2-digit minor revision number

- Example: Mixing CPX_C2 07.ACD

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions Suede

3. 1/0O Module

- Controller name, underscore, abbreviation of rack location
(L=local, R=remote), underscore, the letter S, 2-digit slot
number, underscore, abbreviation of function

« Analog input: Al

- Analog output: AO

« Discrete input: DI

- Discrete output: DO
- Example:

- Mixer123 Controller, Local chassis, Slot 4, Analog Output - Module Name:
- M123_CPX_L00 S04 AO

- Mixer123 Controller, Remote chassis #2, Slot 5,Discrete Input - Module
Name:

_ M123_CPX _R02_S05 DI

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions Suede

4. Tags
- The tag name should be meaningful to future application users
- Utilize a prefix with the abbreviation of the type of tag
. Input tag: | tag name
. Output tag: O _tag name
. Machine State: Sta_tagname

« Parameter: Par_tagname fVariabIes that are received from an external
source that can be internal or external to the program)

- Set point: Set_tagname (Variables received from an operator or HMI and
are not part of an external source)

- Value: Val tagname (Designates a value that might not be the primary
output of the structure)

. Report: Rpt_fagname (Designates a value that is typically used for

reporting.
. Examples: | GRN_ PB O_GRN_LT
Sta_ldle Par_TargetFillLevel
Set_TankHILevel Val_midpoint

Rpt_ Tank1Temp

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions Suede

5. UDT

- A UDT lets you organize or group data logically, so that all of
the data associated with a device (such as a pressure
transmitter or variable-frequency drive) can be grouped.

. You can mix data types, such as real or floating point values, counters,
timers, arrays, Booleans, and other UDTs, within one UDT.

. You can copy a UDT from one project to another, and even from one Logix
controller type to another.

. A UDT is self-documenting based on the tag names you assign, and
provides a logical representation of parts or subsystems.

- Format: UDT_Function or purpose of the UDT
- Examples:

Inventory tracking tag - UDT _InventoryTracking
« Cleanin place system - UDT_CIP

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions Suede

6. Add-On Instructions

- An Add-On Instruction encapsulates commonly used functions
or device controls.

- ltis not intended for use as a high-level hierarchical design
tool.

- Once an Add-On Instruction is defined in a project, it behaves
similarly to the built in instructions that are already available in
the programming software.

- The Add-On Instruction appears on the instruction toolbar and
In the instruction browser

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

VI. Develop Routine Logic Using State
Logic Programming Methods Suedde

- State Programming

- Ladder logic program is based on the different states or
modes of operation of the system being controlled

- Process of viewing process or machine operation in terms of
states as defined by the outputs, and transitions as defined by

the inputs.

States of a Process Suaedde

- When a PLC controlled machine is performing its
intended function(s), the status of its outputs will
define its mode, or state, of operation.

- States

- Modes of operation where the machine is performing an
identifiable activity that has to be initiated and then
stopped.

State Transitions Suedde

- Input status facilitates the transition from one state to
another.

- States

- Defined by the outputs
- Transitions
- Defined by condition (Inputs/Timers/Counters)

State Diagrams Swasde

- Graphically displays the various states and corresponding
transitions between those states of the machine or system
being controlled.

j(_"w - \5 T

2R
[

State Logic Programming Steps Suede

1. Ildentify and document the system states on
a State diagram

2. Identify and document the system
transitions on a state diagram

3. Create the state table

State Logic Programming Steps Suede

4. Write the program state ladder logic per the state
table

a. Define each active state as an Examine_ON input
condition with a unique “internal” address.

b. Create a rung for each output.

c. Use the appropriate state Examine ON input condition to
activate the appropriate output.

- If more than one state activates an output they are to
be ORed together on that rung.

State Logic Programming Steps Suede

5. Write the program transition ladder logic per the state
diagram

a. Transition lines into the state bubble of the state diagram
are Examine_ON (or same as transition state) input
conditions.

b. Transition lines out of the state bubble of the state diagram
are Examine_OFF (or opposite of transition state) input
conditions that are ANDed with the lines into the bubble.

c. Multiple transition lines into the state bubble should be
ORed.

d. Multiple transition lines out of the state bubble (with the
same transition Input address) that lead to another state
may require a counter or timer to differentiate the logic
paths.

State Logic Programming Steps Suede

6. Add process interrupt logic to the program
- Nested States

- States that can only exist if another (higher
state) exists

Example — Hydraulic cylinders only work if
hydraulics are turned on!

State Table

SwosRok

State

Outputs

Red_Lt

Green_Lt

Yellow_Lt

Blue_Lt

Motor

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

