
PLC Programming Guidelines

Dan Kandray

January 30, 2020

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

PLC Programming Guidelines

I. Develop and Document the Project Plan

II. Create a State Logic Diagram

III. Organize Project Structure (Code) into Tasks,
Programs and Routines

IV. Develop Code for Reuse

V. Standardize Naming Conventions

VI. Develop Routine Logic Using State Logic
Programming Methods

VII. Simulate the ladder logic program of instructions to
verify logic continuity

VIII.Download and verify the program on the actual
machine, workstation, or system being controlled.

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

I. Develop and Document the Project Plan

1. From project narrative,
create a clear flowchart
that details machine
functions.

2. Develop a firm
understanding of the
process

3. Simplify the process as
much as possible

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

I. Develop and Document the Project Plan

4. List all anticipated physical inputs, outputs,
parameters and alarms

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

II. Create a State Logic Diagram

1. Identify the machine states and document the
transitions (state selectors) on a State Logic Diagram

a) Each state is identifiable by the unique condition of the outputs

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

III. Organize Project Structure (Code)
into Tasks, Programs and Routines

1. Tasks

a) Most code should reside in a continuous task
b) Use periodic tasks for slower processes or when time based

operations is critical
c) Use event tasks for operations that require synchronization to a

specific event
2. Programs

a) Separate distinguishable equipment or equipment functions into
isolated programs

b) Control the execution order of the programs from Task (properties)
Program Scheduler

c) Centralize Outputs into one program
d) Isolate reusable code and/or different programmers

3. Routines
a) Use ladder logic language in the routine and modularize code into

subroutines.
b) Always place reset conditions in a branch preceding the set condition

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

III. Organize Project Structure (Code)
into Tasks, Programs and Routines

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

VS

IV. Develop Code for Reuse

1. Use user-defined data types (UDTs) to group data

a) A UDT lets you organize or group data logically, so that all of
the data associated with a device (such as a pressure
transmitter or variable-frequency drive) can be grouped.

b) The tag names that you assign self-document the structure
Programs

2. Use Add-On Instructions to create standardized
modules of code for reuse across a project.
a) Used to encapsulate a specific or focused operation or function

3. Use subroutines to reuse code within a program
1. Can pass UDTs

2. Can only be called from with the program they reside

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

UDT Example

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

Add-On Instruction Example

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions

1. Controller
– Area/Unit +Type (Abreviation)

• Example: Mixing_CPX

– Note abbreviation is for CompactLogix PLC

2. Controller Project

– Controller name, the letter C, 1-digit major revision number,
underscore, 2-digit minor revision number

• Example: Mixing_CPX_C2_07.ACD

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions

3. I/O Module

– Controller name, underscore, abbreviation of rack location
(L=local, R=remote), underscore, the letter S, 2-digit slot
number, underscore, abbreviation of function

• Analog input: AI

• Analog output: AO

• Discrete input: DI

• Discrete output: DO

– Example:
• Mixer123 Controller, Local chassis, Slot 4, Analog Output - Module Name:

– M123_CPX_L00_S04_AO

• Mixer123 Controller, Remote chassis #2, Slot 5,Discrete Input - Module
Name:

– M123_CPX _R02_S05_DI

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions

4. Tags
– The tag name should be meaningful to future application users

– Utilize a prefix with the abbreviation of the type of tag

• Input tag: I_tag name

• Output tag: O_tag name

• Machine State: Sta_tagname

• Parameter: Par_tagname (Variables that are received from an external
source that can be internal or external to the program)

• Set point: Set_tagname (Variables received from an operator or HMI and
are not part of an external source)

• Value: Val_tagname (Designates a value that might not be the primary
output of the structure)

• Report: Rpt_tagname (Designates a value that is typically used for
reporting.)

• Examples: I_GRN_PB O_GRN_LT
Sta_Idle Par_TargetFillLevel
Set_TankHILevel Val_midpoint

Rpt_Tank1Temp

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions

5. UDT

– A UDT lets you organize or group data logically, so that all of
the data associated with a device (such as a pressure
transmitter or variable-frequency drive) can be grouped.

• You can mix data types, such as real or floating point values, counters,
timers, arrays, Booleans, and other UDTs, within one UDT.

• You can copy a UDT from one project to another, and even from one Logix
controller type to another.

• A UDT is self-documenting based on the tag names you assign, and
provides a logical representation of parts or subsystems.

– Format: UDT_Function or purpose of the UDT

– Examples:

• Inventory tracking tag - UDT_InventoryTracking

• Clean in place system - UDT_CIP

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

V. Standardize Naming Conventions

6. Add-On Instructions

– An Add-On Instruction encapsulates commonly used functions
or device controls.

• It is not intended for use as a high-level hierarchical design
tool.

– Once an Add-On Instruction is defined in a project, it behaves
similarly to the built in instructions that are already available in
the programming software.

– The Add-On Instruction appears on the instruction toolbar and
in the instruction browser

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

VI. Develop Routine Logic Using State
Logic Programming Methods

• State Programming

– Ladder logic program is based on the different states or
modes of operation of the system being controlled

– Process of viewing process or machine operation in terms of
states as defined by the outputs, and transitions as defined by
the inputs.

States of a Process

• When a PLC controlled machine is performing its
intended function(s), the status of its outputs will
define its mode, or state, of operation.

• States

– Modes of operation where the machine is performing an
identifiable activity that has to be initiated and then
stopped.

State Transitions

• Input status facilitates the transition from one state to
another.

• States

– Defined by the outputs

• Transitions

– Defined by condition (Inputs/Timers/Counters)

State Diagrams

• Graphically displays the various states and corresponding
transitions between those states of the machine or system
being controlled.

State Logic Programming Steps

1. Identify and document the system states on
a state diagram

2. Identify and document the system
transitions on a state diagram

3. Create the state table

State Logic Programming Steps

4. Write the program state ladder logic per the state
table

a. Define each active state as an Examine_ON input
condition with a unique “internal” address.

b. Create a rung for each output.

c. Use the appropriate state Examine_ON input condition to
activate the appropriate output.

• If more than one state activates an output they are to
be ORed together on that rung.

State Logic Programming Steps

5. Write the program transition ladder logic per the state
diagram

a. Transition lines into the state bubble of the state diagram
are Examine_ON (or same as transition state) input
conditions.

b. Transition lines out of the state bubble of the state diagram
are Examine_OFF (or opposite of transition state) input
conditions that are ANDed with the lines into the bubble.

c. Multiple transition lines into the state bubble should be
ORed.

d. Multiple transition lines out of the state bubble (with the
same transition Input address) that lead to another state
may require a counter or timer to differentiate the logic
paths.

State Logic Programming Steps

6. Add process interrupt logic to the program

– Nested States

• States that can only exist if another (higher
state) exists

– Example – Hydraulic cylinders only work if
hydraulics are turned on!

State Table

© 2008 Swagelok Company. Swagelok confidential. For internal use only.

Red_Lt Green_Lt Yellow_Lt Blue_Lt Motor

Outputs
State

